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Starting from first-principles projector-augmented wave method, finite temperature thermodynamic
properties of Ni and Ni3Al, including thermal expansion coefficient, bulk modulus, entropy, enthalpy
and heat capacity, have been studied in terms of quasiharmonic approach. The thermal electronic contri-
bution to Helmholtz free energy is estimated from the integration over the electronic density of state. The
vibrational contribution to Helmholtz free energy is described by two methods: (i) the first-principles
phonon via the supercell method and (ii) the Debye model with the Debye temperatures determined
by Debye–Grüneisen approach and Debye–Wang approach. At 0 K, nine 4-parameter and 5-parameter
equations of state (EOS’s) are employed to fit the first-principles calculated static energy (without
zero-point vibrational energy) vs. volume points, and it is found that the Birch-Murnaghan EOS gives a
good account for both Ni and Ni3Al among the 4-parameter EOS’s, while the Murnaghan EOS and the log-
arithmic EOS are the worse ones. By comparing the experiments with respect to the ones from phonon,
Debye–Grüneisen and Debye–Wang models, it is found that the thermodynamic properties of Ni and
Ni3Al studied herein (except for the bulk modulus) are depicted well by the phonon calculations, and also
by the Debye models through choosing suitable parameters. The presently comparative studies of Ni and
Ni3Al by phonon and Debye models, as well as by different EOS’s, provide helpful insights into the study
of thermodynamics for solid phases at elevated temperatures.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The parameter-free first-principle calculations, e.g. based on the
density functional theory, require only knowledge of the atomic
species and crystal structure, and hence, are predictive in nature.
In combination with quasiharmonic approach, finite temperature
thermodynamics of sold phase can be depicted accurately in terms
of first-principles calculations (see examples in [1–8]), wherein the
used Helmholtz free energy F(V, T) at volume V and temperature T
is usually approximated by,

FðV ; TÞ ¼ EðVÞ þ FelðV ; TÞ þ FvibðV ; TÞ ð1Þ

where E(V) is the static energy (without zero-point vibrational en-
ergy) at 0 K and volume V predicted by e.g. first-principles calcula-
tions, and fitted by an equation of state (EOS). Fel(V, T) represents the
thermal electronic contribution to free energy with respect to the
corresponding V and T, which is in particular important for metal
(instead of semiconductor and insulator) system due to the non-
zero electronic density at the Fermi level. Fvib(V, T) is the vibrational
contribution to free energy, usually described by phonon calcula-
ll rights reserved.
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tions for the sake of accuracy [1,3,8] or by Debye model for the sake
of simplicity and efficiency [4,6,7]. Although there exist compara-
tive researches of pressure vs. volume (P–V) EOS’s at high pressures
(see e.g. [9]), few attentions have been paid to the fittings of differ-
ent E–V EOS’s. Furthermore, comparative researches of vibrational
contributions from phonon and Debye models are also scarce in
the literature (see [10] for the study of MgSiO3). The dearth of the
aforementioned studies therefore motivates this work.

In the present work, first-principles thermodynamics of Ni with
fcc structure and Ni3Al with L12 structure will be studied based on
Eq. (1), aiming to evaluate the fittings of different EOS’s and the
vibrational contributions obtained from phonon and Debye mod-
els. The selections of Ni and Ni3Al are due to the technologically
important Ni-based superalloy, and in particular the newly devel-
oped coatings by Gleeson and co-workers [11,12] have demon-
strated oxidation kinetics a factor of 10–20 slower than the
current Pt-modified NiAl coatings. These new coatings are based
on the two-phase mixture of Ni + Ni3Al in the Ni–Al–Pt system
and further modified with Cr, Hf, Y and Zr, with Ni3Al being the
major phase. Since these new coatings have the same constitution
as Ni-based superalloys, they have opened the path to the develop-
ment of highly oxidation resistant and compatible coatings for cur-
rent and future generation of superalloys. Based on first-principles

http://dx.doi.org/10.1016/j.commatsci.2009.12.006
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phonon calculations, Wang et al. [1] described the thermodynamic
properties of Ni and Ni3Al by the linear response theory [13], and
later on Arroyave et al. [2] described them by the supercell method
[14], wherein the thermal electronic contributions were included
and discussed in both works. The studies of EOS’s and Debye model
were not mentioned in [1,2], while they will be the main topics of
this work.

In the present work, we organize the paper as follows. In Sec-
tion 2, we present firstly the widely used 4-parameter and 5-
parameter EOS’s, and then the theories to calculate the thermal
electronic contribution from electronic density of state (DOS) and
the vibrational contribution based on phonon DOS and Debye
models. In Section 3, details of electronic structures and first-prin-
ciples phonon results are presented. Herein the first-principles cal-
culations are performed by VASP code [15,16]; the phonon
calculations are carried out by the supercell approach [14] as
implemented in ATAT code [17]. In Section 4, we discuss the EOS
fittings and the first-principles thermodynamics for Ni and Ni3Al.
Finally, in Section 5 the conclusions of the present work are given.
Table 1
Equilibrium property B000 in the 4-parameter EOS’s represented by B0 and B00.

EOS B000

BM4 ð�143þ 63B00 � 9B00
2Þ=ð9B0Þ

mBM4 ð�74þ 45B00 � 9B00
2Þ=ð9B0Þ

LOG4 ð�3þ 3B00 � B00
2Þ=B0

Murnaghan 0
Vinet ð19� 18B00 � 9B00

2Þ=ð36B0Þ
Morse ð5� 5B00 � 2B00

2Þ=ð9B0Þ
2. Theory

In order to describe the first-principles thermodynamics using
Eq. (1), details of the equations and methods will be presented in
this Section including the energy vs. volume (E–V) EOS’s (Section
2.1), the thermal electronic contribution to Helmholtz free energy
(Section 2.2), and the vibrational contribution to Helmholtz free
energy by phonon and two Debye models (Section 2.3).

2.1. Energy vs. volume equations of state

A lot of E–V and correspondingly the P–V EOS’s are presented in
the literature, and each of them possesses its application for some
materials. Therefore, we need to choose a suitable EOS, based on
such as the minimum fitting errors as described below. The avail-
able E–V EOS’s can be grouped into linear and non-linear ones,
where the linear ones can be written in matrix form enabling the
fit parameters to be solved by (pseudo-)inversion, and the matrix
form is easily implemented in e.g. the cluster expansion method
[7]. Therefore the linear EOS’s will be the first choice if possible.
The widely used linear EOS’s are the Birch-Murnaghan (BM) EOS
[18,19] and the modified one (mBM EOS) [7,20]. Their 5-parameter
equation has the following common format:

EðVÞ ¼ aþ bV�n=3 þ cV�2n=3 þ dV�3n=3 þ eV�4n=3 ð2Þ

where a, b, c, d, and e are the fitting parameters, for 4-parameter
cases e = 0. When n = 2, it is the BM EOS; when n = 1, Eq. (2) be-
comes the mBM EOS proposed by Teter et al. [20]. Another com-
monly used linear EOS is the logarithmic (LOG) one [21],

EðVÞ ¼ aþ b ln V þ cðln VÞ2 þ dðln VÞ3 þ eðln VÞ4 ð3Þ

where a, b, c, d, and e are also the fitting parameters with e = 0 for 4-
parameter case. The LOG EOS is believed to offer better performance
at high pressures than the BM EOS.

Besides the linear EOS’s in the forms of Eqs. (2) and (3), the non-
linear EOS’s studied in the present work are Murnaghan [22], Vinet
[23,24] and Morse [5] EOS’s. The 4-parameter Murnaghan EOS [22]
has the following form:

EðVÞ ¼ aþ B0V
B00

1þ ðV0=VÞB
0
0

B00 � 1

 !
ð4Þ

where the fitting parameter a ¼ E0 � B0V0
B00�1 : The parameters V0, E0, B0,

and B00 represent the equilibrium volume, energy, bulk modulus,
and its first derivate with respect to pressure, respectively. The
non-linear 4-parameter Vinet EOS [23,24] is in the form of,

EðVÞ ¼ a� 4B0V0

ðB00 � 1Þ2
1� 3

2
ðB00 � 1Þ 1� V

V0

� �1=3
" #( )

� exp
3
2
ðB00 � 1Þ 1� V

V0

� �1=3
" #( )

ð5Þ

where the fitting parameter a ¼ E0 þ 4B0V0

ðB00�1Þ2
. Additionally, the 4-

parameter non-linear Morse EOS [5] can be expressed by,

EðVÞ ¼ aþ b expðdV1=3Þ þ c expð2dV1=3Þ ð6Þ

where a, b, c, and d are the fitting parameters.
Starting from the E–V EOS’s, the volume-dependent pressure P,

bulk modulus B, the first and the second derivates of bulk modulus
with respect to pressure, B0 and B00, respectively, are obtained via,

PðVÞ ¼ �V
@E
@V

ð7Þ

BðVÞ ¼ V
@2E

@V2 ð8Þ

B0ðVÞ ¼ @B
@P
¼ @B
@V

�
@P
@V

ð9Þ

B00ðVÞ ¼ @
2B

@P2 ¼
@2B

@V2

@P
@V
� @

2P

@V2

@B
@V

 !
@P
@V

� �3
,

ð10Þ

As an example, for BM4 EOS (Eq. (2) with n = 2 and e = 0), the
determinations of equilibrium properties V0, B0, and B00 are given
in Appendix A. For another example of mBM4 EOS (Eq. (2) with
n = 1 and e = 0), the formulae to estimate V0, B0, and B00 can be
found in [7]. It is worth mentioning that B00 is a property obtained
from 5-parameter EOS’s, for 4-parameter cases B00 can be calculated
from B and B0 with details shown in Table 1. As listed in Table 1,
B00 = 0 holds for Murnaghan EOS.

Inversely, starting from the equilibrium properties E0, V0, B0, B00,
and B000, the EOS’s can be obtained directly, just like the cases of
Murnaghan EOS shown in Eq. (4) and Vinet EOS shown in Eq. (5).
In Table A1 of Appendix A, the equations of fitting parameters rep-
resented by equilibrium properties are shown for BM, mBM, LOG
and Morse EOS’s.

Furthermore, according to the first-principles practices of EOS
fitting, the EOS should be performed in a single phase region, and
in general the first-principles data points should be in the volume
range of ±10% around the equilibrium volume, and at least five data
points (>10 is better) should be employed. For magnetic materials
(such as the Ni3Al case below), care should be taken for the corre-
spondingly magnetic moment vs. volume (MM-V) relationship: a
sudden jump of MM-V usually indicates a signal of magnetic phase
transition.
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2.2. Thermal electronic contribution to Helmholtz free energy

Thermal electronic contribution to Helmholtz free energy is
determined by Mermin statistics Fel = Eel � TSel, where the internal
energy at the volume V and temperature T due to electronic exci-
tations is given by [1],

EelðV ; TÞ ¼
Z

nðeÞf ede�
Z eF

nðeÞede ð11Þ

where n(e) is the electronic DOS, e the energy eigenvalues, eF the en-
ergy at the Fermi level, f the Fermi distribution function
f ðe; T;VÞ ¼ 1=fexpðe�lðT;VÞ

kBT Þ þ 1g with kB the Boltzmann’s constant

and l the electronic chemical potential which should be carefully
calculated to keep the number of electrons at T to be constant
(the same as the number at 0 K and below eF). The bare electronic
entropy due to electronic excitations is written by [1],

SelðV ; TÞ ¼ �kB

Z
nðeÞ½f ln f þ ð1� f Þ lnð1� f Þ�de ð12Þ

Note that the thermal electronic contribution is usually for me-
tal only (instead of semiconductor and insulator), the shape and
DOS around the Fermi level determine mainly the thermal elec-
tronic contributions to Helmholtz free energy.

2.3. Vibrational contributions to Helmholtz free energy

2.3.1. Vibrational contribution from phonon
Based on the distribution of frequency x, i.e. the phonon DOS

g(x), at a given volume V, vibrational contribution to Helmholtz
free energy can be written as follows according to the partition
function of lattice vibration (see e.g. [1,8]),

FvibðV ; TÞ ¼ kBT
Z 1

0
ln 2 sinh

�hx
2kBT

� �
gðxÞdx; ð13Þ

where �h is the reduced Planck constant. Based on phonon DOS, the
nth moment Debye cutoff frequency and the corresponding nth mo-
ment Debye temperature can be determined, where the Debye cut-
off frequencies are given by [25],

xn ¼
nþ 3

3

Z xmax

0
xngðxÞdx

� �1=n

; with n–0;n > �3 ð14Þ

x0 ¼ exp
1
3
þ
Z 1

0
xn lnðxÞdx

� �
; with n ¼ 0 ð15Þ

Thus, the nth moment Debye temperature is obtained by,

HDðnÞ ¼
�h
kB

xn ð16Þ

With different value of n, the obtained Debye temperature cor-
responds to different meanings [3], for example, HD(2) usually
links to the Debye temperature obtained from the heat capacity
data, and will be used in the present work.

2.3.2. Vibrational contribution from Debye model
For the sake of simplicity or many structures needed to be trea-

ted, the vibrational contribution to Helmholtz free energy can be
estimated by the empirical Debye model (see e.g. [26]),

FvibðV ; TÞ ¼
9
8

kBHD þ kBT 3 ln 1� exp �HD

T

� �� �
� D

HD

T

� �� �
ð17Þ

where D(HD/T) is the Debye function given by DðxÞ ¼
3=x3

R x
0 t3=½expðtÞ � 1�dt. In order to evaluate Eq. (17), the key is to

obtain the Debye temperature HD. In terms of Debye–Grüneisen
model [5], HD is written by,
HD ¼ sAV1=6
0

B0

M

� �1=2 V0

V

� �c

ð18Þ

where s is a scaling factor with s = 0.617 obtained by Moruzzi et al.
[5] from nonmagnetic cubic metals. Other s values are also reported
in the literature, e.g. s = 0.7638 for pure iron [27]. M is the atomic
mass, c is the Grüneisen constant defined by c ¼ ½ð1þ B00Þ=2� x�
with x = 2/3 for high temperature case and x = 1 for low tempera-
ture case [5]. The parameter A is a constant with A = (6p2)1/3⁄/
kB = 231.04 if V in Å3, B (and P) in GPa, and M in atomic mass of
gram. Note that the Debye–Grüneisen model implicates that the
Grüneisen constant is always a constant [5].

Without using the Grüneisen constant, Wang et al. [28] pro-
posed a method to calculate the Debye temperature,

HD ¼ sAV1=6 1
M

B� 2ðkþ 1Þ
3

P
� �� �1=2

ð19Þ

where the parameter k in Debye–Wang model is adjustable with
values commonly taken 0, ±1/2, and ±1. For instance, if k ¼ �1,
Eq. (19) will be used in high temperature case; if k ¼ 1, Eq. (19) will
be used in low temperature case (see [28] for details). The Debye–
Wang model has been used further by Lu et al. [29,30]. It should
be mentioned that both Eq. (18) and Eq. (19) will predict the same
Debye temperature under equilibrium conditions with V = V0,
B = B0, and P = 0.

3. Details of first-principles and phonon calculations

In the present work the first-principles calculations of Ni and
Ni3Al are performed by VASP code [15,16]. The electron–ion inter-
actions are described by the full potential frozen-core PAW method
[31,32], and the exchange–correlation is treated within the GGA of
Perdew–Burke–Ernzerhof (PBE) [33]. The reason to choose the
PAW method instead of the ultrasoft pseudo-potentials is that
the PAW method combines the accuracy of all-electron methods
with the efficiency of pseudo-potentials [32], as demonstrated in
e.g. [34]. In VASP calculations, the wave functions are sampled
on 22 � 22 � 22 k-point mesh for Ni and 20 � 20 � 20 for Ni3Al
based on Monkhorst–Pack scheme [35] together with the linear
tetrahedron method including Blöchl corrections [36]. The energy
cutoff on the wave function is taken as 350 eV, which is 1.3 times
higher than the default values. The energy convergence criterion
for electronic self-consistency is 10�7 eV per atom. Due to the fer-
romagnetic nature of Ni-containing materials, all the calculations
are performed within the spin-polarized approximation.

The phonon calculations are carried out by the supercell meth-
od [14] as implemented in ATAT code [17], with VASP again the
computational engine. We use the 72-atom and 48-atom super-
cells for Ni and Ni3Al, respectively. Displacements of 0.1 Å are
adopted in the perturbed supercells, resulting in the maximum
force acting on atom is �0.8 eV/Å at the equilibrium volume. In
VASP calculations, we use the 4 � 4 � 4 Monkhorst–Pack k-point
mesh [35] and the Methfessel–Paxton technique [37]. After VASP
calculations, the cutoff range of 6 Å is used to fit the force constants
and to get the phonon results by ATAT. Additional details of pho-
non methodology can be found in [8].

4. Results and discussion

In this Section, we present the comparative studies of EOS’s of
Ni and Ni3Al (Section 4.1), the electronic and phonon results of
Ni and Ni3Al (Section 4.2), and the vibrational contribution to
Helmholtz free energy from phonon, Debye–Grüneisen and De-
bye–Wang models (Section 4.3). Note that we ignore herein the
singular behaviors of thermodynamics (see the case of Ni below)



Table 2
Fitted properties by EOS’s together with the measurements, including lattice
parameter a0 (Å), bulk modulus B0 (GPa) and its first and second derivates with
respect to pressure, B00 and B000 (1/GPa), respectively. The fitting errors estimated by Eq.
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due to the magnetic phase transition from ferromagnetic phase to
paramagnetic phase. On the other hand, the thermodynamics of Ni
and Ni-containing materials possesses the similar behavior in the
ferromagnetic and paramagnetic regions due to the small magnetic
moment of Ni (<1lB/atom, see below).

4.1. Properties from equations of state

VASP calculated static energies and magnetic moments of Ni
and Ni3Al are shown in Fig. 1 as a function of volume, together with
the fittings by nine EOS’s given in Eqs. (2)–(6). At lower volumes
(e.g. <40 Å3 per unit cell), the calculated Ni3Al points are not shown
in Fig. 1 due to the fact that Ni3Al is convergent to nonmagnetic
state. Table 2 shows the EOS’s fitted equilibrium properties includ-
ing volume V0 (represented by lattice parameter), bulk modulus B0

and its first and second derivates with respect to pressure: B00 and
B000, respectively, together with the fitting error estimated by,
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Fig. 1. Calculated total energies (open cycles) and magnetic moments (open
squares) for Ni and Ni3Al as a function of volume, together with the fittings by nine
EOS’s given in Eqs. (2)–(6) with 1 – mBM4 (4-parameter EOS), 2 – mBM5 (5-
parameter EOS), 3 – BM4, 4 – BM5, 5 – LOG4, 6 – LOG5, 7 – Murnaghan, 8 – Vinet,
and 9 – Morse. The 5 - parameter EOS’s (2), (4), and (6) are shown in dashed lines,
the 4-parameter ones are shown in solid lines.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½ðEfit � EcalcÞ=Ecalc�2

k

s
ð20Þ
where Efit and Ecalc are the fitted and the first-principles calculated
energies, respectively, k represents the total number of the calcu-
lated points. As shown in Fig. 1 and Table 2, the 5-parameter EOS’s
(mBM5, BM5 and LOG5) give better fittings of E–V points than the
4-parameter ones. Among the 4-parameter EOS’s, the BM4 is the
best one with the smallest fitting errors for both Ni and Ni3Al (see
Table 2), while the LOG4 and the Murnaghan are the worse ones
due to that B00 = 0 will be predicted by Murnaghan EOS (see Table 1),
and the logarithmic ones (LOG4 and LOG5, see Eq. (3)) cannot
(20) are also shown.

Material Method a0 B0 B00 B000 Error (�10�4)

Ni mBM4 3.5231 196.5 4.98 �0.0414 1.427
mBM5 3.5235 194.0 4.96 �0.0329 0.078
BM4 3.5237 193.1 4.94 �0.0295 0.540
BM5 3.5235 193.9 4.96 �0.0328 0.081
LOG4 3.5224 204.0 4.98 �0.0631 5.626
LOG5 3.5232 193.9 5.03 �0.0339 0.326
Murnaghan 3.5258 185.6 4.73 0 4.952
Vinet 3.5229 196.6 5.01 �0.0420 1.491
Morse 3.5231 195.9 5.00 �0.0397 1.116
Expt. 3.53a 188b

Ni3Al mBM4 3.5693 179.7 4.60 �0.035 0.131
mBM5 3.5691 180.0 4.69 �0.032 0.043
BM4 3.5690 180.1 4.74 �0.029 0.085
BM5 3.5691 180.0 4.68 �0.032 0.043
LOG4 3.5699 178.7 4.27 �0.047 0.583
LOG5 3.5692 180.1 4.67 �0.035 0.048
Murnaghan 3.5679 181.0 5.27 0 0.807
Vinet 3.5694 179.7 4.55 �0.039 0.190
Morse 3.5693 179.8 4.58 �0.037 0.148
Expt. 3.57a 172c

a Estimated value based on measurements at room temperature [38].
b Recommended value at 0 K [39].
c Measurement at room temperature [40].
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predict E / 0 when V / (+1). As for the 5-parameter EOS’s, bad fit-
tings will be resulted when the E-V points are scattered. Therefore,
the 4-parameter EOS’s are recommended. In the present work, the
BM4 (Eq. (2) with n = 2 and e = 0) is used as it possesses the smallest
fitting error.

Table 2 also shows that the fitted lattice parameters of Ni and
Ni3Al by different EOS’s are close to each other, and agree with
measurements at room temperature [38]. For Ni, the maximum
bulk modulus of 204 GPa is fitted by LOG4, while the minimum
one of 186 GPa is given by Murnaghan EOS. By considering the less
accurate fittings of LOG4 and Murnaghan, the fitted bulk modulus
of Ni should be around 193–196 GPa, which is slightly larger than
the measured 188 GPa at 0 K [39]. For Ni3Al, the fitted bulk modu-
lus is around 180 GPa (without considering the results from LOG4
and Murnaghan, also true for the rest discussions), which is 3% lar-
ger than the measured �172 GPa at room temperature [40].
Regarding B00, the EOS’s predict �5 for Ni and �4.7 for Ni3Al. For
B000, the 5-parameter EOS’s give values around �0.033 GPa�1 for
Ni and �0.035 GPa�1 for Ni3Al. B000’s in the 4-parameter EOS’s,
which are obtained from B and B00, are also shown in Table 1. The
close values of B000 between the 5-parameter and the 4-parameter
EOS’s indicate the fittings are in good quality. In addition, Table 2
also shows that the fitting qualities of Ni3Al are in general better
than those of Ni as indicated by the fitting errors.
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4.2. Electronic and phonon properties

First-principles calculated electronic DOS’s of Ni and Ni3Al at
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Fig. 3. Calculated phonon dispersion curves for Ni and Ni3Al at the theoretical
equilibrium volumes, together with the room measurements (symbols) of Ni [25]
and Ni3Al [41].
Fig. 2. For both materials, the Fermi levels locate in the dip places,
indicating the stabilities of ferromagnetic phases of fcc Ni and L12

Ni3Al. In addition, the non-zero densities around the Fermi levels
occur for Ni and Ni3Al, implying the thermal electronic contribu-
tion to free energy should be considered, especially at high temper-
atures. For example of Ni, Wang et al. [1] indicate that more than
10% thermal electronic contribution to free energy (and other
properties) happens for Ni if T > 900 K. Additionally, the including
of thermal electronic contributions improves the agreements be-
tween the predicted thermodynamic properties and the measure-
ments for both Ni and Ni3Al [1,2]. Therefore, the thermal
electronic contributions will be included (but without discussion)
in the present work.

In order to verify the qualities of first-principles phonon calcu-
lations, Fig. 3 shows the predicted phonon dispersion curves at the
theoretical equilibrium volumes (see Table 2) together with the
room temperature measurements by neutron diffractions of Ni
[25] and Ni3Al [41]. A good agreement is observed between calcu-
lations and measurements, in particular for Ni. Based on the pho-
non results, the Debye temperatures can be estimated by Eq.
(16). Herein the predicted second moment Debye temperatures
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Fig. 4. Linear thermal expansion coefficients for Ni and Ni3Al as a function of
temperature calculated by (i) phonon plus thermal electronic contribution, (ii)
Debye–Grüneisen model (high temperature and low temperature cases) plus
thermal electronic contribution, and (iii) Debye–Wang model (k = 0, ±0.5, and ±1)
plus thermal electronic contribution. The recommended values (open cycles) are
also shown for Ni [42] and Ni3Al [43].
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at the theoretical equilibrium volumes are 385 K and 425 K for Ni
and Ni3Al, respectively, agreeing well with the measured high tem-
perature limits of �390 K [25] and �425 K [41]. The predicted De-
bye temperatures from phonon are used to adjust the scaling
factors in both the Debye–Grüneisen model of Eq. (18) and the De-
bye–Wang model of Eq. (19), with the values of 0.617 and 0.65 ob-
tained for Ni and Ni3Al, respectively. It worth mentioning that the
scaling factor is less important in Debye model, in comparison with
the Grüneisen constant in Eq. (18) and the value of k in Eq. (19),
therefore the later two will be discussed in Section 4.3.

4.3. Thermodynamic properties

The linear thermal expansion coefficient a at fixed pressure P
(P = 0 will be used in the present work) can be determined by,

a ¼ 1
3V0T

@V0T

@T

� �
p

ð21Þ

where V0T is the equilibrium volume at the temperature of interest,
determined by Eq. (1) at P = 0. Fig. 4 shows the linear thermal
expansion coefficients of Ni and Ni3Al, predicted by phonon, De-
bye–Grüneisen and Debye–Wang models. Note that the thermal
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Fig. 5. Bulk moduli for Ni and Ni3Al as a function of temperature calculated by (i)
phonon plus thermal electronic contribution, (ii) Debye–Grüneisen model (high
temperature and low temperature cases) plus thermal electronic contribution, and
(iii) Debye–Wang model (k = 0, ±0.5, and ±1) plus thermal electronic contribution.
The measured values (open cycles) are also shown for Ni [39] and Ni3Al [40].
electronic contributions are included for all the thermodynamic
properties discussed in this Section. The thermal expansion coeffi-
cients predicted by phonon agree well with the recommended val-
ues of Ni [42] and Ni3Al [43]. As for the Debye model, the predicted
thermal expansion coefficients depend heavily on the selected
Grüneisen constant in Debye–Grüneisen model and the k value in
Debye–Wang model. A large Grüneisen constant (i.e. the high tem-
perature case, see Eq. (18)) and a small k value predict large thermal
expansion coefficients at temperatures >100 K. A suitable selection
of Grüneisen constant or k value will describe well the linear ther-
mal expansion coefficients. In the present work, the high tempera-
ture case of Grüneisen constant in Debye–Grüneisen model and
k ¼ �0:5 in Debye–Wang model predict results close to phonon
and experiments for both Ni and Ni3Al.

Fig. 5 shows the temperature-dependent bulk moduli of Ni and
Ni3Al obtained by phonon, Debye–Grüneisen model, Debye–Wang
model, together with the available measurements [39,40]. For both
Ni and Ni3Al, the measured bulk moduli are in general higher than
most of the predictions, agreeing with the low temperature case of
Debye–Grüneisen model and k ¼ 1 of Debye–Wang model, instead
of phonon predictions.
84

82

80

78

164016001560

80

60

40

20

0

En
tro

py
, J

 m
ol

-1
 K

-1

160012008004000
Temperature, K

 Expt.
 El+Ph
 El+Debye_Grüneisen
 El+Debye_Wang

Ni

-1

1

High
Low

-0.5

300

250

200

150

100

50

0

En
tro

py
, J

 m
ol

-1
K-1

160012008004000
Temperature, K

 Expt.
 El+Ph
 El+Debye_Grüneisen
 El+Debye_Wang

310

305

300

295

290

164016001560

Ni3Al
-1

0

1

High

Low

a

b

Fig. 6. Entropies for Ni and Ni3Al as a function of temperature calculated by (i)
phonon plus thermal electronic contribution, (ii) Debye–Grüneisen model (high
temperature and low temperature cases) plus thermal electronic contribution, and
(iii) Debye–Wang model (k = 0, ±0.5, and ±1) plus thermal electronic contribution.
Note that the unit for Ni is per mole atom, and for Ni3Al it is per mole formula with
four atoms. The recommended values (open cycles) are also shown for Ni and Ni3Al
[44].
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Fig. 6 illustrates the entropies of Ni and Ni3Al calculated by pho-
non, Debye–Grüneisen model, Debye–Wang model, where the en-
tropy is obtained by S = �(oF/oT)V under P = 0. The recommended
entropies [44] are also shown in Fig. 6 for comparison, which are
slightly higher than the phonon results, especially for Ni in the
intermediate temperature range. Regarding the Debye model, the
predictions from the high temperature case of Debye–Grüneisen
model and k ¼ �1 of Debye–Wang model agree with the recom-
mended values.

Fig. 7 shows the enthalpies of Ni and Ni3Al obtained by phonon,
Debye–Grüneisen model, Debye–Wang model, together with the
recommended values [44], where the enthalpy at P = 0 is obtained
by H = F + TS and the reference state is the commonly used setting
in CALPHAD community [45], i.e. the H at 298.15 K and 1 bar. Note
that the enthalpy and internal energy are equal at P = 0. Fig. 7
shows that the phonon predictions agree well with the recom-
mended values of Ni3Al, and slightly larger than the recommended
ones of Ni. For Debye model, the results from the high temperature
case of Debye–Grüneisen model and k ¼ �0:5 of Debye–Wang
model agree with the recommended values and also the phonon
results.
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Fig. 7. Enthalpies for Ni and Ni3Al as a function of temperature calculated by (i)
phonon plus thermal electronic contribution, (ii) Debye–Grüneisen model (high
temperature and low temperature cases) plus thermal electronic contribution, and
(iii) Debye–Wang model (k = 0, ±0.5, and ±1) plus thermal electronic contribution.
The recommended values (open cycles) are also shown for Ni and Ni3Al [44]. Note
that the unit for Ni is per mole atom, and for Ni3Al it is per mole formula with four
atoms.
In the present work, heat capacity at constant pressure is esti-
mated by,

CP ¼ CV þ b2BTV ð22Þ

where CV is the heat capacity at constant volume estimated by
CV = T(oS/oT)V. b is the volume thermal expansion coefficient which
is three times larger than the linear one given by Eq. (21), i.e., b = 3a.
The B, T, and V are the bulk modulus, temperature and volume,
respectively. Using the results of linear thermal expansion coeffi-
cients in Fig. 4, the bulk moduli in Fig. 5, and the estimated CV,
the results of CP at P = 0 are plotted in Fig. 8 based on phonon, De-
bye–Grüneisen model, and Debye–Wang model. The recommended
values of Ni [42] and Ni3Al [44] are also shown in Fig. 8. It is found
that the phonon results are in good agreement with the recom-
mended values, especially for Ni. For Debye model, the results from
the high temperature case of Debye–Grüneisen model and k ¼ 0 of
Debye–Wang model describe well the recommended values.

By considering all the thermodynamic properties of Ni and
Ni3Al predicted herein, including thermal expansion coefficient,
bulk modulus, entropy, enthalpy and heat capacity, we find that
(i) the phonon plus thermal electronic contributions describe well
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Fig. 8. Heat capacities for Ni and Ni3Al as a function of temperature calculated by (i)
phonon plus thermal electronic contribution, (ii) Debye–Grüneisen model (high
temperature and low temperature cases) plus thermal electronic contribution, and
(iii) Debye–Wang model (k = 0, ±0.5, and ±1) plus thermal electronic contribution.
The recommended values (open cycles) are also shown for Ni [42] and Ni3Al [44].
Note that the unit for Ni is per mole atom, and for Ni3Al it is per mole formula with
four atoms.
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the thermodynamics except for the bulk modulus and (ii) the re-
sults from the high temperature case of Debye–Grüneisen model
and k ¼ �0:5 of Debye–Wang model (thermal electronic contribu-
tion included in Debye model) are comparable with the phonon re-
sults and also the experiments.
5. Conclusions

Temperature-dependent thermodynamic properties of Ni and
Ni3Al, including thermal expansion coefficient, bulk modulus, en-
tropy, enthalpy and heat capacity, have been studied in terms of
first-principles calculations and quasiharmonic approach, wherein
the thermal electronic and vibrational contributions are consid-
ered. Nine energy vs. volume (E–V) equations of state (EOS’s) are
presented in detail and fitted to the first-principles calculated E–
V points. It is found that the 4-parameter Birch-Murnaghan EOS
gives a good account for both Ni and Ni3Al, while the Murnaghan
EOS and the logarithmic EOS are the worse ones among the 4-
parameter EOS’s. At finite temperatures, comparative studies are
performed between phonon, Debye–Grüneisen and Debye–Wang
models, it is found that the thermodynamic properties of Ni and
Ni3Al studied herein (except for the bulk modulus) are described
well by phonon and thermal electronic contributions, and also by
Debye model through choosing suitable parameters, i.e., the high
temperature case of Debye–Grüneisen model and k ¼ �0:5 of De-
bye–Wang model. The presently comparative studies of Ni and
Table A1
Fitting parameters a, b, c, d, and e represented by equilibrium properties E0, V0, B0, B00, and

EOS

BM4

BM5

mBM4

mBM5

LOG4

LOG5

Morse
Ni3Al between phonon and Debye model, as well as by different
EOS’s, provide helpful insights into the study of thermodynamics
of solid phases.
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Appendix A

For BM4 EOS, i.e., Eq. (2) with n = 2 and e = 0, the equilibrium
properties V0, B0, and B00 can be estimated by the following
equations:

V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9bcd� 4c3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � 3bdÞð4c2 � 3bdÞ2

q
b3

vuut
ðA1Þ

B0 ¼
2ð27dþ 14cV2=3

0 þ 5bV4=3
0 Þ

9V3
0

ðA2Þ
B000 for BM4, BM5, mBM4, mBM5, LOG4, LOG5 and Morse EOS’s.

Equation

a ¼ E0 þ 9B0V0ð6� B00Þ=16

b ¼ �9B0V5=3
0 ð16� 3B00Þ=16

c ¼ 9B0V7=3
0 ð14� 3B00Þ=16

d ¼ �9B0V3
0ð4� B00Þ=16

a ¼ E0 þ 3B0V0ð287þ 9B0B000 � 87B00 þ 9B00
2Þ=128

b ¼ �3B0V5=3
0 ð239þ 9B0B000 � 81B00 þ 9B00

2Þ=32

c ¼ 9B0V7=3
0 ð199þ 9B0B000 � 75B00 þ 9B00

2Þ=64

d ¼ �3B0V3
0ð167þ 9B0B000 � 69B00 þ 9B00

2Þ=32

e ¼ 3B0V11=3
0 ð143þ 9B0B000 � 63B00 þ 9B00

2Þ=128

a ¼ E0 þ 9B0V0ð4� B00Þ=2

b ¼ �9B0V4=3
0 ð11� 3B00Þ=2

c ¼ 9B0V5=3
0 ð10� 3B00Þ=2

d ¼ �9B0V2
0ð3� B00Þ=2

a ¼ E0 þ 3B0V0ð122þ 9B0B000 � 57B00 þ 9B00
2Þ=8

b ¼ �3B0V4=3
0 ð107þ 9B0B000 � 54B00 þ 9B00

2Þ=2

c ¼ 9B0V5=3
0 ð94þ 9B0B000 � 51B00 þ 9B00

2Þ=4

d ¼ �3B0V2
0ð83þ 9B0B000 � 48B00 þ 9B00

2Þ=2

e ¼ 3B0V7=3
0 ð74þ 9B0B000 � 45B00 þ 9B00

2Þ=8

a ¼ E0 þ B0V0½3ðln V0Þ2 þ ðB00 � 2Þðln V0Þ3�=6

b ¼ �B0V0½2 ln V0 þ ðB00 � 2Þðln V0Þ2�=2
c ¼ B0V0½1þ ðB00 � 2Þ ln V0 �=2
d ¼ �B0V0ðB00 � 2Þ=6

a ¼ E0 þ B0V0½12ðln V0Þ2 þ 4ðB00 � 2Þðln V0Þ3 þ ð3þ B0B000 � 3B00 þ B00
2Þðln V0Þ4�=24

b ¼ �B0V0½6 ln V0 þ 3ðB00 � 2Þðln V0Þ2 þ ð3þ B0B000 � 3B00 þ B00
2Þðln V0Þ3�=6

c ¼ B0V0½2þ 2ðB00 � 2Þ ln V0 þ ð3þ B0B000 � 3B00 þ B00
2Þðln V0Þ2�=4

d ¼ �B0V0½�2þ B00 þ ð3þ B0B000 � 3B00 þ B00
2Þ ln V0�=6

e ¼ B0V0ð3þ B0B000 � 3B00 þ B00
2Þ=24

a ¼ E0 þ 9B0V0ðB00 � 1Þ�2=2

b ¼ �9B0V0ðB00 � 1Þ�2 expðB00 � 1Þ
c ¼ 9B0V0ðB00 � 1Þ�2 expð2B00 � 2Þ=2

d ¼ ð1� B00ÞV
�1=3
0
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B00 ¼
243dþ 98cV2=3

0 þ 25bV4=3
0

81dþ 42cV2=3
0 þ 15bV4=3

0

ðA3Þ

See Table A1.
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